Changes in aortic dimensions and pulsatility following endovascular aneurysm repair using the Nellix endoprosthesis.

Published: 10-12-2014 Last updated: 21-04-2024

to quantitatively characterize the stresses and forces on an implanted endograft during the cardiac cycle in terms of longitudinal movement.

Ethical review	Approved WMO
Status	Recruitment stopped
Health condition type	Aneurysms and artery dissections
Study type	Observational non invasive

Summary

ID

NL-OMON41853

Source ToetsingOnline

Brief title Dynamic CTA after endovascular aneurysm repair

Condition

• Aneurysms and artery dissections

Synonym aorta aneurysm, enlarged artery of the aorta

Research involving Human

Sponsors and support

Primary sponsor: Rijnstate Ziekenhuis Source(s) of monetary or material Support: Stichting St Elizabeth, Stichting St. Elizabeth

1 - Changes in aortic dimensions and pulsatility following endovascular aneurysm rep \ldots 11-05-2025

Intervention

Keyword: Dynamic CTA scan, Endovascular aneurysm repair, Nellix endoprosthesis

Outcome measures

Primary outcome

endograft displacement during the cardiac cycle (mm)

Secondary outcome

changes in normal aortic pulsatility following endograft placement (mm).

Study description

Background summary

Abdominal aortic aneurysm (AAA) is a prevalent disorder affecting 4.3 to 8.8% of men over the age of 60.1 Since the introduction of endovascular aneurysm repair (EVAR) in the early 1990*s, EVAR is performed in the majority of patients to prevent rupture. Endovascular Aortic replacement (EVAR) for the treatment of aortic aneurysms is an established endovascular technique. In spite of rigorous follow-up and improved stengraft desingn EVAR is still associated with procedure related complications like type I and II endoleak. To reduce the incidence of complications endograft development is ongoing. One of the latest developments is the Nellix endoprosthesis. Unlike current devices the Nellix endoprosthesis is composed of a stent-frame surrounded by endobags. During placement these endobags are filled with a polymer. This polymer fills up the original aneurysm sac, excluding the aneurysm and securing the stent-frame within the aorta. Although promising the stresses and forces exerted onto the endograft by aortic pulsatility may have an effect on the durability and functioning of the endograft. By evaluating endograft movement during the cardiac cycle (dynamic CTA) it is possible to assess the stress and force exerted onto the Nellix device. This might help gain insight into mechanisms underlying potential endograft failure, and aid the development of future devices with long-term durability.

Study objective

to quantitatively characterize the stresses and forces on an implanted endograft during the cardiac cycle in terms of longitudinal movement.

Study design

Observational case series (pilot)

Study burden and risks

Regular preoperative and follow-up imaging for EVAR planning and follow-up using the Nellix endoprosthesis consists of Computed Tomography Angiography preoperative and at six weeks, six months and one year after EVAR. In this study the preoperative and first follow-up CTA (6 weeks after EVAR) will be replaced by a Dynamic CTA.

Contacts

Public Rijnstate Ziekenhuis

Wagnerlaan 55 Arnhem 6815 AD NL **Scientific** Rijnstate Ziekenhuis

Wagnerlaan 55 Arnhem 6815 AD NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

scheduled endovascular (15 patients) aneurysm repair using the Nellix endoprosthesis. Informed consent

Exclusion criteria

No specific contra-indications

Study design

Design

Study type: Observational non invasive		
Masking:	Open (masking not used)	
Control:	Uncontrolled	
Primary purpose:	Treatment	

Recruitment

NL	
Recruitment status:	Recruitment stopped
Start date (anticipated):	15-04-2015
Enrollment:	15
Туре:	Actual

Ethics review

Approved WMO	
Date:	10-12-2014
Application type:	First submission
Review commission:	CMO regio Arnhem-Nijmegen (Nijmegen)
Approved WMO	
Date:	05-03-2015
Application type:	Amendment

4 - Changes in aortic dimensions and pulsatility following endovascular aneurysm rep ... 11-05-2025

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register	ID
ССМО	NL51011.091.14

Study results

Date completed:	27-06-2018
Actual enrolment:	10